If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+20x=12
We move all terms to the left:
3x^2+20x-(12)=0
a = 3; b = 20; c = -12;
Δ = b2-4ac
Δ = 202-4·3·(-12)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{34}}{2*3}=\frac{-20-4\sqrt{34}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{34}}{2*3}=\frac{-20+4\sqrt{34}}{6} $
| ∠A=6x+18∠B= | | 3(y+3)-6y=33 | | -22=-5v+2(v-2) | | 2.25(x-2.5=x+8 | | -28+x=-31 | | 12+13x=155 | | 2(n)-3.2=16.05 | | -240+10x=-x+101 | | 79=6x+4x+9 | | 9=v+72 | | 5^2x-5^(x+1)+6=0 | | -29+-3m=-20 | | 2x+2=3(x-4) | | -7x+3(x+5)=-5 | | 20x-5(6x+4=4x-6 | | -5x-147=93+11x | | 5(h+7)=17 | | 42=6(x-10) | | 6(n)=48.6 | | 2x=3(2x+6) | | -35=-8u+5(u-4) | | 14-6x=44 | | 8.4+n=14.4 | | 4.25(85+x)=2911.25 | | 5x+12=143 | | -2=3(w+6)-8w | | x÷8=-15 | | 7-3x=44 | | 7-3x/2=22 | | -153+x=169-13x | | 3m=18.8 | | 7+3x=44 |